» » Закон ома простым языком. Закон Ома для замкнутой цепи: описание и примеры задач Как пишется закон ома для замкнутой цепи

Закон ома простым языком. Закон Ома для замкнутой цепи: описание и примеры задач Как пишется закон ома для замкнутой цепи

Георг Симон Ом, выдающийся немецкий физик. Именно ему принадлежит одно из важнейших открытий, без которого сложно себе представить работу всех тех людей, которые работают с электричеством. Конечно, в жизни мы пользуемся и другими законами, не менее важны, например первый и второй законы Кирхгофа, но именно благодаря Георгу Ому и его закону мы сейчас можем довольно легко посчитать, какой ток будет протекать в проводе при заданной мощности или посчитать мощность, которую можно присоединить на провод.

Конечно, на этом использование его закона не заканчивается и имеет более широкое применение, но в целом, для бытовых нужд мы используем один из его законов: закон Ома для участка цепи, который гласит –сила тока в цепи прямопропорциональна приложенному напряжению и обратнопропорциональна сопротивлению цепи . В виде формулы это выглядит так: I=U/R. Как известно, мощность – это произведение тока и напряжения (P=U I), отсюда легко узнать напряжение или ток, если известна мощность, но неизвестна одна из требуемых величин: ток или напряжение. Чтобы не писать здесь все эти формулы, настоятельно рекомендую сохранить себе вот такую диаграмму

И тогда вам не придется все запоминать или выводить. Очень простая диаграмма. Внутри круга искомая величина, снаружи формула, по которой ее можно найти, используя известные величины.
Но Ом вывел и другие более сложные законы. Например: закон Ома для полной цепи. В этом случае учитывается не только сопротивление самой цепи, но и сопротивление источника питания. И звучит он так: Сила тока в замкнутой цепи, состоящей из источника тока (или напряжения) с внутренним сопротивлением и нагрузки, которая также, естественно имеет сопротивление, равна отношению величины ЭДС (электродвижущей силы) источника к сумме внутреннего сопротивления источника и сопротивления нагрузки.

где ɛ — это ЭДС источника, r – внутреннее сопротивление источника, R – внешнее сопротивление цепи.
В таком виде этот закон справедлив для напряжения, которое носит характер постоянного, то есть не меняет своего значения с течением времени. Если проще выразиться, у которого есть плюс и минус. Типичным примером источника постоянного напряжения является батарейка.

В переменном токе закон Ома так же справедлив, но вносится небольшая корректировка. Дело в том, что в сетях переменного напряжения присутствуют такие элементы, как индуктивность и емкость. Об этом мы немного говорили в статье «Общее сопротивление электрической цепи». Поэтому для переменного напряжения будет справедлива формула I=U/Z, где Z – это полное сопротивление цепи. Для индуктивности она будет равна а для емкости Таким образом, реактивное сопротивление будет выглядеть так ну а полное сопротивление цепи В итоге, мы получаем формулу закона Ома для полной цепи, которая выглядит так.

Вряд ли в жизни вам пригодится эта формула, ибо мне, как электрику, который делает ремонты в домах, квартирах и других сооружениях, она еще ни разу не пригодилась. В основном я пользуюсь формулой, которую ошибочно называют «Законом Ома» для участка цепи, о которой я писал выше, и которая более востребована для расчетов.

На практике закон Ома для полной цепи может потребоваться лишь только для того, чтобы вычислить внутреннее сопротивление источника ЭДС. Так же величина тока важна при . В большинстве случаев мы сталкиваемся с этим законом только в школе на уроках физики и благополучно об этом забываем.

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе - сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля - Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля - Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник - выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?

Замкнутая цепь содержит: источник тока, сопротивления (потреби тока), приборы для контроля характеристик тока, провода, ключ. Приме может служить цепь, приведенная на рис.5. По отношению к источнику можно выделит внешнюю цепь, содержащую элементы, находящиеся данного источника, если проследить за током от одной его клеммы другой, и внутреннюю, к которой относят проводящую среду внутри источника обозначим сопротивление внешней цепи через R , внутреннее сопротивление источника r . Тогда ток в цепи определяется по закону для замкнутой цепи, который гласит, что ток в замкнутой цепи прямо пропорционален величине ЭДС и обратно пропорционален сумме внутреннего и внешнего сопротивления цепи, т.е.

Из этого закона вытекают следующие частные случаи:

Если R стремится к нулю (т.е. R << r ), то ток I стремится к максимально

возможному значению I к.з = , называемому током короткого

замыкания. Этот ток опасен для источников, поскольку вызывает перегрев источника и необратимые изменения проводящей среды внутри него.

Если R стремится к бесконечно большой величине (т.е. при условии, что R >> r ), ток I уменьшается, и падение напряжения внутри источника Ir становится намного меньше IR , следовательно IR . Значит, величину ЭДС источника можно практически измерить с помощью вольтметра, присоединенного к клеммам источника при условии, что сопротивление вольтметра R V >> r при разомкнутой внешней цепи.

Распределение энергии при работе источника постоянного тока

Пусть источник постоянного тока имеет ЭДС и внутреннее

сопротивление r и замкнут на сопротивление внешней нагрузки R .

Проанализируем несколько величин, характеризующих распределение энергии при работе источника постоянного тока.

а) Затраченная источником мощность Р.

Работа, совершаемая сторонними силами в замкнутой цепи по

перемещению заряда dq , равна:

dA = dq (9)

Исходя из определения, мощность, развиваемая сторонними силами в

источнике, равна:

(10)

Эта мощность расходуется источником во внешней и внутренней по отношению к источнику частях цепи. Используя закон Ома для замкнутой цепи, можно затраченную мощность представить в виде:

Если сопротивление нагрузки R уменьшается, стремясь к нулю, то Р зат P max = Если R увеличивается, стремясь в бесконечность, то Р зат . График зависимости затраченной сторонними силами мощности Р зат от величины внешнего сопротивления R показан на рисунке 5.

б) Полезная мощность Р под : _

Полезной по отношению к источнику мощностью Р под считается мощность, расходуемая источником во внешней цепи, т.е. на внешней нагрузке. Она равна:

Пользуясь законом Ома для замкнутой цепи, или заменив в последнем выражении I на /(R + r ), можно представить в виде

(13)

Если числитель и знаменатель этого выражения разделить на R , то получится выражение

(13a)

наглядно демонстрирующее то, что Р пол стремится к нулю как при уменьшении R до нуля, так и при его бесконечном увеличении, т.к. в обоих случаях знаменатель этого выражения стремится к бесконечности. Это означает, что при некотором оптимальном значении R полезная мощность достигает максимального значения

Определить оптимальное значение R , а также и значение , можно, приравняв нулю первую производную функции Р поя = f (R ) пo R :

(14)

Как видно, полученное равенство соблюдается при условии

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

то есть напряжение между полюсами источника

тока зависит от ЭДС и работы сторонних сил по перемещению единичного заряда от одного полюса источника к другому.

2. Сформулируйте и запишите закон Ома для замкнутой цепи

Сила тока в замкнутой электрической цепи пропорциональна ЭДС источника и обратно пропорционально сопротивлению цепи.

3. В чем различие встречного и согласованного включения последовательно соединенных источников тока?

Говорят, что 2-й источник включен встречно первому, если они, работая в одиночку, создают токи, идущие в одном направлении. 3-й источник включен согласованно с первым, если токи, создаваемые ими, направлены одинаково.

4. Сформулируйте закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока. Приведите формулу этого закона.

Сила тока в замкнутой электрической цепи с последовательно соединенными источниками тока прямо пропорциональна сумме их

ЭДС и обратно пропорционально сопротивлению цепи.

5. Как определить направление тока в замкнутой цепи с несколькими последовательно соединенными источниками тока?

Если

то ток течет по часовой стрелке. В обратном случае - против часовой стрелки.